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Adversarial attacks against supervised learning algorithms, which necessitates the application of logging while using supervised
learning algorithms in software projects. Logging enables practitioners to conduct postmortem analysis, which can be helpful to
diagnose any conducted attacks. We conduct an empirical study to identify and characterize log-related coding patterns, i.e., recurring
coding patterns that can be leveraged to conduct adversarial attacks and needs to be logged. A list of log-related coding patterns can
guide practitioners on what to log while using supervised learning algorithms in software projects.

We apply qualitative analysis on 3,004 Python files used to implement 103 supervised learning-based software projects. We identify
a list of 54 log-related coding patterns that map to 6 attacks related to supervised learning algorithms. Using Log Assistant to conduct
Postmortems for Supervised Learning (LOPSUL), we quantify the frequency of the identified log-related coding patterns with 278 open
source software projects that use supervised learning. We observe log-related coding patterns to appear for 22% of the analyzed files,
where training data forensics is the most frequently occurring category.
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1 INTRODUCTION

Supervised learning algorithms use training data provided in the form of inputs labeled with corresponding outputs to
construct models [69]. Constructed models are then used to make predictions on unseen data [69]. Since the 1990s,
supervised learning algorithms have been used in diverse domains, such as finance, healthcare, and transportation [44].

While supervised learning algorithms, such as Naive Bayes (NB), and deep neural network (DNN) have yielded
benefits, these algorithms are susceptible to attacks [7, 29, 45]. In the context of machine learning, attacks are actions that
target supervised learning to cause malfunction [50]. Attacks against supervised learning-based projects can have serious
consequences for people’s well-being [19, 20, 54, 55]. Examples include but are not limited to: (i) minuscule changes to
an image can malfunction a DNN-based diagnosis software to misclassify a benign mole as malignant [20], and (ii)
hand-crafted stickers can reduce performance of traffic sign classification software by 100%, potentially jeopardizing
transportation safety [19].
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The above-mentioned examples show that attacks against supervised learning algorithms can have real-world
consequences, which necessitates application of logging so that practitioners can conduct postmortem analysis. The
importance of logging in supervised learning-based projects, i.e., software projects that use supervised learning
algorithms, have been advocated by policy makers, such as the U.S. and Europe ACM Public Policy Council [24], as well
as by researchers [49, 52]. Logging in supervised learning-based projects can help practitioners to perform postmortem
analysis of attacks directed towards supervised learning-based projects [52].

Despite the importance of logging, practitioners lack guidance on how logging can be applied while developing
supervised learning-based projects [64]. A lack of guidance related to logging can either lead practitioners to not log at
all [22, 34], or log too much [22, 34], which can cause performance concerns [75], and hinder troubleshooting [40, 46].
Existing research [43, 76, 82] has provided guidelines on what code elements can be logged, for example, exception
blocks, return-value variables, and logic branches. However, these guidelines do not consider the attack types and
mechanisms, which is pivotal to detect and perform postmortem analysis of attacks in supervised learning-based
projects [52].

We conduct an empirical study of log-related coding patterns to guide practitioners on what to log while developing
supervised learning-based projects. Log-related coding patterns are recurring coding patterns that can be leveraged
to conduct adversarial attacks and needs to be logged. Our hypothesis is that through systematic investigation, we
can identify log-related coding patterns and the attacks they map to, which can aid practitioners to make informed
decisions on what to log to facilitate postmortem analysis of any conducted attacks.

We answer the following research questions:

• RQ1: What categories of log-related coding patterns appear in supervised learning-based projects? [Sec-
tion 4]

• RQ2: How frequently do identified log-related coding patterns appear in supervised learning-based projects?
[Section 6]

We conduct our empirical study by applying qualitative analysis on 3,004 Python files to identify log-related coding
patterns that map to attacks against supervised learning algorithms. We collect our set of 3,004 Python files from 103 OSS
repositories maintained by ModelZoo [2]. We construct a static analysis tool called Log Assistant to conduct Postmortems

for Supervised Learning (LOPSUL). We use LOPSUL to quantify the frequency of log-related coding patterns in 278 OSS
supervised learning-based projects. Datasets and source code used to conduct our empirical study is available online [5].
An overview of our methodology is presented in Figure 1. Source code of LOPSUL is available online [8].

Contributions: We list our contributions as follows:

• A list of log-related coding pattern categories for supervised learning-based projects;
• An empirical evaluation of how frequently log-related coding patterns appear in supervised learning-based projects;
and

• A tool called LOPSUL to automatically identify log-related coding patterns in software projects.

2 MOTIVATING EXAMPLE

We use a hypothetical example to motivate our paper. Tracy is a data scientist working for a U.S.-based medical insurance
company. As part of automating the process of approving medical benefit claims, Tracy has been asked to develop
a binary classification software that will leverage a patient’s medical history to decide if a patient will be awarded
requested medical benefits. Tracy starts building the classification software by first creating a data import method
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Fig. 1. An overview of our research methodology.

shown in Listing 1. The data import method is used for data pre-processing, and model building using supervised
classification algorithms. Upon construction, the classification software is evaluated using an oracle dataset provided
by the company. Satisfied with performance Tracy and higher ups of the company decides to use the classification
software in practice.

Within three months of usage, the company starts noticing benefit claims getting approved by the classification
software for patients who are not insured by the company. Higher ups from the company assume that these are
fraudulent claims, possibly done by creating adversarial samples from a user with or without malicious intent, and ask
Tracy to investigate if their hypothesis is valid. Unfortunately, as evident from Listing 1 while implementing the data
import module for the classification software no logging practices were applied that could have helped Tracy to perform
necessary postmortem analysis. “I wish I knew code snippets used for data imports can be leveraged to conduct malicious

attacks”, Tracy contemplates, and starts looking for resources that describe what coding patterns can be leveraged for
adversarial supervised learning.

1 from pathlib import Path
2 import pandas as pd
3 def import_bill_data(path_to_bill: Path) -> pd.DataFrame:
4 df = pd.read_csv(path_to_bill, header=None, sep=" ")
5 return df

Listing 1. Use of read_csv(path_to_bill) to import data. The read_csv()method can be used to provide dataset with adversarial
samples using path_to_bill.

Our paper aims to help practitioners on identifying coding patterns that can be leveraged to conduct adversarial
attacks in supervised learning-based projects. We refer to these coding patterns as log-related coding patterns, i.e.,
recurring coding patterns that can be leveraged to conduct adversarial attacks and needs to be logged. In Listing 1,
pd.read_csv() is an example log-related coding pattern, where the method pd.read_csv() can be used to provide
datasets with adversarial samples using the path_to_bill parameter.

3 BACKGROUND

We provide background information on machine learning, adversarial machine learning, and logging to help the reader
gain background necessary for our paper.
Machine Learning: ML is the science of getting machines to learn autonomously from real-world interactions and
experiences through data that we feed them without being explicitly programmed [32]. ML encompasses a broad
range of ML tools, techniques, and ideas. Depending on what type of feedback is available to the learning system,
ML techniques are divided into three broad categories: supervised learning, unsupervised learning and reinforcement
learning. SLPs use supervised learning algorithms, that build a mathematical model of a data set that includes both
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inputs and outputs [59]. The data is known as training data and consists of a set of training examples. Supervised
learning algorithms look for patterns from the training dataset. A high-impact area of progress in supervised learning
in recent years involves Deep Neural Networks (DNN), which are multi-layer threshold unit networks, each of which
calculates simple parameterized function of its inputs [61].

Unsupervised learning algorithms take a data set that contains only inputs and find structure or commonality in
data, such as data point grouping or clustering [25]. Unsupervised algorithms learn from unlabeled data, known as test
data. Whereas supervised ML algorithms finds patterns in a dataset of correct answers, unsupervised learning tasks
look for patterns that are often impossible to identify by humans. Reinforcement learning is an ML area concerned
with how software agents should take action in an environment to maximize the notion of cumulative reward [67].
Reinforcement learning, as opposed to providing the computer with correct input-output pairs, provides the machine
with a method for measuring its performance with positive reinforcement and the machine learns behavior through
trial-and-error interactions with the environment [33].
Adversarial Machine Learning: Although ML involves multiple knowledge-based systems, the data-driven approach
of ML presents additional security challenges in the training and testing phases of system operations. ML has become
so interconnected with security that the ability of the technical community to implement ML in a secure manner will
be vital to future environments [47]. Adversarial machine learning has emerged to study the weaknesses of machine
learning approaches in adversarial settings and to develop methods to make learning stable for adversarial exploitation
[71]. Adversarial machine learning is concerned with designing ML algorithms that can withstand security challenges,
studying the capabilities of attackers, and understanding the consequences of an attack [68]. To make a system secure,
it is not sufficient to have an effective strategy, it is also necessary to anticipate the response of the opponent to that
strategy [31]. It is important to explore the attacks along with defenses in order to get a deepen understanding of the
security issue of ML systems, with the aim of providing an effective defense to mitigate attacks on security-sensitive
applications such as, autonomous driving, healthcare and finance.
Logging: Logging is a common programming practice that developers use to record the run-time behavior of a software
system for software forensics. Logs have been used for a variety of purposes like debugging [76], system monitoring
[51], security compliance [76], and business analytics [6]. Security incidents can arise from the misuse of existing
software systems. Thus, appropriate logging mechanisms should be implemented at the software level to support the
detection and investigation of security incidents.

Logs are generated during runtime by the output statements that developers insert into the source code. It is crucial
to avoid logging too little or too much. To achieve so, developers need to make informed decisions on where to log
and what to log in their logging practices during development. There are no well-defined guidelines for software
logging [23] [77]. Some of the common information that need to be logged for easier forensic are: the name of the
identity provider or security realm that vouched for the username, if that information is available; the affected system
component or other object (such as a user account, data resource, or file); the status that says if the object succeeded
or failed; the application context, such as the initiator and target systems, applications, or components; “from where”
information for messages related to network connectivity or distributed application operation; and the time stamp and
time zone to help answer “when”. Recently, there have been many research works devoted to the area of where-to-log
[16] [23] [76] [82], what-to-log [28] [42] [78], and how-to-log [11] [13] [77]. However, most of these works focus on
improving the quality of log printing code [12].
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4 RQ1: LOG-RELATED CODING PATTERNS

In this section, we describe our threat model, and provide the methodology to answer RQ1: What categories of log-related

coding patterns appear in supervised learning-based projects? Later in Section 4.3, we provide answers to RQ1.

4.1 Threat Model

Our threat model can have two categories of users: users with malicious intent, and users with no malicious intent.
A malicious user performs adversarial attacks with the intent to cause harm to the system, while a regular user may
perform adversarial attacks for socially beneficial methods as explained by Albert et al. [4]. In SLPs, malicious users i.e.,
users with malicious intent, can attempt to manipulate the input data, corrupt the model or tamper with the output
with the goal of impacting confidentiality, integrity, availability and privacy of the systems. A user with no malicious
intent can also perform attacks for desirable aims as documented by Albert et al. [4]. Attacks can happen during
the training phase or during the testing phase. Attacks at testing time do not tamper with the targeted model but
instead either cause it to produce adversary selected outputs (i.e., integrity attack) or collect evidence about the model
characteristics (i.e., confidentiality attack). Attacks on training attempt to corrupt the model itself through explicit
attacks or via an untrusted data collection component. Users can perturb the training data by inserting adversarial
inputs into the existing training data (injection), or altering the training data directly (modification). Besides tampering
with the training data, users may modify the category labels or tamper the features. Users can tamper with the learning
algorithm by colluding with an untrusted ML training component. We define ‘log-related coding patterns’ as recurring
coding patterns that can be leveraged to conduct adversarial attacks and need to be logged. We focus on identifying
‘vulnerable points’ within SLPs with the help of log-related coding patterns.

4.2 Methodology for RQ1

Log-related coding patterns are recurring coding patterns that can be leveraged to conduct adversarial attacks. We use
verb-object pairs to determine log-related coding patterns because King et al. [34] reported that verb-object pairs express
actions that need to be logged to detect security-related breaches. Our hypothesis is that by identifying verb-object pairs
we can determine what coding patterns need to be logged to conduct postmortem analysis if supervised learning-based
projects are attacked. We answer RQ1 using the following steps:

4.2.1 Step-1: Dataset Collection. We use supervised learning-based projects maintained and curated by ModelZoo.
ModelZoo is a platform, which curates software projects that use machine learning algorithms, such as supervised
learning, deep learning, and reinforcement learning. Many researchers and practitioners are using ModelZoo for
different tasks with all kinds of architectures and data [2]. These models are learned and applied for problems ranging
from simple regression, to large-scale visual classification. Our assumption is that by using software projects maintained
by ModelZoo we will be able to apply qualitative analysis on a diverse set of projects that use supervised learning. We
download 103 repositories that use supervised learning from ModelZoo on August, 2020. Attributes of the collected
repositories are provided in Table 1. While downloading the repositories we delete all data except the Python files and
number of commits to make sure we do not include any personal data. We only collect metadata of the repositories that
do not include any personal information of the repository contributors or users.

4.2.2 Step-2: Qualitative Analysis. We apply qualitative analysis by applying the following steps:
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Step-2.1: Verb-Object Pair Identification From the downloaded repositories we collect 3,004 Python files that we
use to identify verb-object pairs. We use a similar approach to King et al. [34], where a rater manually inspects each file
to identify verb-object pairs. We repeat the process for all files in our dataset and identify all unique verb object pairs.

Step-2.2: Validation with CRUD Heuristics The derivation process of log-related coding patterns is susceptible to
rater bias. We mitigate the bias by applying closed coding to determine if the identified verb-object pair maps to Create,
Read, Update, Delete (CRUD) action provided by King et al. [34]. King et al. [34] identified seven CRUD actions that
must be logged to detect security breaches for software projects that are used in the healthcare domain. If a mapping
exists between the verb-object pair and a CRUD action, then we can mitigate the rater bias that is inherent within the
verb-object pairs identified from Step-2.1.

From the collected verb-object pairs from Step-2.1, we first determine the action that is expressed. Next, we map the
expressed action to each of the seven CRUD actions provided by King et al. [34]. The rater uses the definitions for each
CRUD action to determine if the identified action can be mapped to a CRUD action.

Step-2.3: Mapping to Supervised Learning Attacks After separating the verb-object pairs, we determine if the
identified verb-object pairs can be used to conduct an attack against a supervised learning algorithm. A rater determines
if a verb-object pair can be mapped to an attack by first, identifying the action expressed by the verb-object pair. Second,
the rater examines if the action can be leveraged to conduct an attack by using four publications that describe how
attacks can be conducted for supervised learning algorithms. The four publications are: “SoK: Security and privacy in

machine learning”, “Towards Security Threats of Deep Learning Systems: A Survey”, “A Survey on Security Threats and

Defensive Techniques of Machine Learning: A Data Driven View”, and “The security of machine learning”, respectively,
authored by Papernot et al. [53], He et al. [29], Liu et al. [45], and Barreno et al. [7]. We use the four publications because
these publications discuss the categories of adversarial attacks against supervised learning algorithms, such as random
forest, and the mechanisms on how to conduct such attacks. Fourth, as the final step the rater separates the verb-object
pairs that can be used to conduct attacks, along with the applicable algorithms. Upon completion of this step we will
separate coding patterns that map to attacks against supervised learning-based projects.

Step-2.4: Open Coding to Determine Categories We apply open coding on the identified coding patterns from
Step-2.3. While there are no duplicates amongst the identified coding patterns, semantic similarities may exist
between multiple coding patterns. For example, the following two coding patterns, load_images(params) and
load_audio(audio_path) are different in syntax but are similar with respect to semantics, i.e., reading data from a
file. We systematically identify these similarities and derive categories using open coding. We use open coding because
open coding can be used to generate categories from text mined from software artifacts, e.g., source code snippets.
After completion of open coding the rater identifies a category. Furthermore, the rater separates the verbs from the
verb-object pairs from the coding patterns, which was used to derive the category. In our categorization, a coding
pattern can belong to multiple categories, as the same coding pattern can map to multiple attacks.

Table 1. Attributes of Supervised Learning-based Projects Used in Section 4.2

Attribute Statistic
Total Repositories 103
Total Commits 11,662
Total Python Files 3,004
Total Lines Of Code 5,71,054
Applications Audio Speech, Computer Vision, Natural Language Processing, Generative Models
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Table 2. Example to Demonstrate OurQualitative Analysis Approach for RQ1

Example Coding Pattern Step-2.1 (Verb Object Pair) Step-2.2 (CRUD Action) Step-2.3 (Attack
Mapping)

Step-2.4 (Open Coding)

load_images(params) verb:load, object:params CRUD action: read action: read, attack:
data poisoning

Category: Training Data Forensics,
Coding patterns: load_images(),
load_audio()load_audio(audio_path) verb:load, object:audio_path CRUD action: read action: read, attack:

data poisoning

We use two code snippets listed in the column ‘Example Coding Pattern’ of Table 2 to demonstrate our qualitative
analysis process. As shown in the ‘Step-2.1 (Verb Object Pair)’ column, we identify load and params, respectively, as a
verb and object for the coding pattern load_images(params). Next, we map the verb-object pair to the CRUD action
read, following the definition of King et al. [34]. The action ‘read’ can be used to conduct data poisoning attacks as
reported by Papernot et al. [53] and He et al. [29].

Steps-2.1, 2.2, and 2.3 are similar for the two coding patterns: load_images(params) and load_audio(audio_path).
As both coding patterns can be used to conduct data poisoning attacks by reading training data, we create a category
called ‘Training Data Forensics’ in Step-2.4.
Rater verification: The first and second author, who respectively, has experience in software security of 3 and 6 years,
individually apply the above-mentioned steps on the collected Python files. Upon completion of the open coding process,
the authors discussed their agreements and disagreements. The first and second authors respectively identified 6 and 7
categories. The first author identified 1 category not identified by the second author namely ‘Download Forensics’. At
this stage the Cohen’s Kappa [14] is 0.6, indicating moderate agreement [39]. Upon completing the discussion, both
raters individually revisit their categories, and agreed on 6 security-relevant categories. At this stage the Cohen’s Kappa
is 1.0.

4.3 Answer to RQ1

We identify six categories of log-related coding patterns that should be logged in supervised learning-based projects,
as shown in Figure 2. We provide the definition, description, corresponding ML attacks, and subcategories for each
category. We list the identified coding patterns, corresponding attacks, and applicable classifier algorithms for each
category in Table 3.
I. Download Forensics: This category includes coding patterns that can be used to conduct attacks due to malformed
input and therefore, need to be logged to enable forensics. For training, supervised learning models need data, which
can be downloaded from the Internet. However, unsolicited downloads may result in downloading corrupt data from
the Internet that can impact supervised learning model performance. According to Kurita et al. [38], downloading
untrusted pre-trained weights poses a security threat. Downloading models from remote sources can facilitate attacks
due to malformed input [74]. Therefore, logging needs to be enabled for the coding patterns included in the download
forensics category.

In Listing 2, logging needs to be enabled for the coding pattern wget.download(), because if we have the information
of the source of the remote dataset, it could help the practitioner determine if an attack occurred and perform necessary
postmortem analysis. We identify seven log-related coding patterns that belong to the download forensics category.
II. Flip Label Forensics: Label perturbation attack usually happens when labels of training data are collected from
external sources. For instance, a collaborative spam filtering process updates the email classifier based on feedback
from end-users, where malicious users can mislabel emails in their inboxes to feed false information to the update
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Fig. 2. A taxonomy of log-related coding patterns for supervised learning-based projects.

Table 3. Answer to RQ1: Log-related Coding Pattern Categories and Corresponding Attacks

Categories Coding Patterns Attack Algorithms
Download Foren-
sics

wget.download(); urlopen(); prepare_url_image();
load_url(); misc.download_model(); lat-
est_blob.download_to_filename(); _download();
download_from_url();

Malformed input: In malformed input attack the mali-
cious user concocts an input to the supervised learning
system that reliably produces an output different from
the intended output [26].

DNN

Flip Label Foren-
sics

read_h5file(); hf.get(); load_data_and_labels();
load_image(); scipy.io.loadmat();
hfw.create_dataset(); interpreter.get_tensor();
evaluate(); coco_gt.loadRes();

Label perturbation: The baseline strategy of label per-
turbation attack is to perturb the labels for a fraction of
the training data to reduce the prediction accuracy of
supervised learning systems [53].

Support Vec-
tor Machine
(SVM), Logistic
Regression (LR)

Pipeline Forensics pipeline_pb2.TrainEvalPipelineConfig();
get_configs_from_pipeline_file(); ArgumentParser();

Physical domain: In physical domain attacks, malicious
users find perturbations preserved by the data pipeline
that precedes the classifier in the overall targeted system
[37].

DNN

Prediction Foren-
sics

get_tensor(); show_data_summary(); Model stealing: Model stealing attack attempts to repli-
cate a supervised learning model via the APIs provided,
without prior knowledge of training data and algorithms
[30].

LR, SVM, DNN

Pre-trained Model
Forensics

load_decoder(); load_previous_values();
load_pretrained(); patch_path(); sp_model.Load();
load_model_package(); load_model();
load_state_dict(); load_param(); load_checkpoint();

Model poisoning: In model poisoning attack, a malicious
user pollutes a supervised learningmodel with certain la-
tent behavior, to be unwittingly adopted by third parties
and later exploited by the malicious user [53].

LR, SVM, MLP,
DNN

Training Data
Forensics

open(); load_celebA(); load_images();
load_wav(); load_randomly_augmented_audio();
load_generic_audio(); load_audio();
_load_vocab_file(); json.load(); load_lua();
get_raw_files(); load_attribute_dataset();
load(); upload_from_filename(); read_file();
from_tensor_slices(); read_csv(); MNIST(); open();
File(); frombuffer(); get_loader(); read_h5file();

Data poisoning: Data poisoning attack aims to reduce
the prediction accuracy of supervised learning systems
by polluting training data in a manner so that it is im-
perceptible to the human eye [53]

NB, SVM, DT,
MLP, DNN

method [80]. A malicious user can significantly reduce the performance of supervised learning algorithms by flipping
the labels of train data [80]. This technique can be used to effectively fool road sign classifiers for autonomous vehicles
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1 if args.tar_path and os.path.exists(args.tar_path):
2 target_file = args.tar_path
3 else:
4 wget.download(TED_LIUM_V2_DL_URL, target_dl_dir)
5 target_file = os.path.join(target_dl_dir, "TEDLIUM_release2.tar.gz")

Listing 2. Example of a coding pattern that belongs to the download forensics category.

by perturbing the labels for a fraction of the training data. To keep track of whether or not labels are being manipulated
or not, logging needs to be enabled. Flip label forensics includes two sub-categories:

II-A. Creating Labels with Dataframe Manipulations: This subcategory includes coding patterns that can be
used to conduct label perturbation attacks while creating labels through dataframe manipulations and therefore, need
to be logged to enable forensics. Code snippets, such as hfw.create_dataset(“labels”) can be used to create labels
by manipulating dataframes. However, malicious users might perturb the created labels to perform label perturbation
attacks. In case of such an attack, it can be helpful to have the logged information to troubleshoot.

In Listing 3, logging needs to be enabled for the coding pattern hfw.create_dataset(), because if we have the
information of the source of the labels, in case of a label perturbation attack it could help the practitioner perform
necessary postmortem analysis. We identify four log-related coding patterns that belong to this subcategory.

1 label = hfw.create_dataset("labels", data=df_attr[list_col_labels].values)
2 label.attrs["label_names"] = list_col_labels

Listing 3. Example of a coding pattern that belongs to the creating labels with dataframe manipulations subcategory.

II-B. Loading Labels From Datasets Where Labels are Predefined: This subcategory includes coding patterns
that can be used to conduct label perturbation attacks by perturbing the predefined labels in a dataset and therefore,
need to be logged to enable forensics. Code snippets, such as hf.get(‘label’) can be used to load labels from a
dataset. In supervised learning, the labels might be loaded from a remote or local file. Loading classification labels from
the file can facilitate label perturbation attacks [53] as malicious users may change the labels used to train models. In
case of such an attack, it can be helpful to have the logged information to troubleshoot.

In Listing 4, logging needs to be enabled for the coding pattern hf.get(), because if we have the information of
the source of the loaded predefined labels, in case of a label perturbation attack it could help the practitioner perform
necessary postmortem analysis. We identify five log-related coding patterns that belong to this subcategory.

1 with h5py.File(path, 'r') as hf:
2 data = np.array(hf.get('data'))
3 label = np.array(hf.get('label'))

Listing 4. Example of a coding pattern that belongs to the loading labels from datasets where labels are predefined subcategory.

III. Pipeline Forensics: This category includes coding patterns that can be used to conduct physical domain attacks
[53] while loading pipeline configurations and therefore, need to be logged to enable forensics. A machine learning
pipeline includes the following stages: training the model, evaluating the model, deploying the model, and using the
model for predictions. Data pipelines used in supervised learning often are susceptible to attacks. In physical domain
attacks, malicious users find perturbations preserved by the data pipeline that precedes the classifier in the overall
targeted system [37]. When the malicious user is unable to directly modify feature values used as model inputs, a
physical domain attack helps to reduce the accuracy of the model classification. As a consequence of physical domain
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attack, autonomous vehicles may over speed if the road sign recognition models inside were compromised [18]. In such
a physical attack, a malicious user change existing physical road signs with adversarial perturbations that is the change
is done after the training process but before the deploying process of the pipeline. To keep track of whether or not an
attack on the data pipeline is happening, logging needs to be enabled.

In Listing 5, logging needs to be enabled for the coding pattern ArgumentParser(), because if we have the information
of the source of the loaded pipeline configurations, in case of an adversarial attack it could help the practitioner determine
if an attack occurred and perform necessary postmortem analysis. We identify three log-related coding patterns that
belong to the pipeline forensics category.

1 parser = argparse.ArgumentParser(description='Input pipeline')
2 parser.add_argument('--audio_dir', default=os.path.expanduser(pathToAudioFile), help='Location of sound

files')↩→

3 args = parser.parse_args()

Listing 5. Example of a coding pattern that belongs to the pipeline forensics category.

IV. Prediction Forensics: This category includes coding patterns that can be used to conduct model stealing attacks
and therefore, need to be logged to enable forensics. Model stealing attack attempts to replicate a supervised learning-
based model via the APIs provided, without prior knowledge of training data and algorithms [30]. In this attack, the
malicious users first submit input to the target model and get the predict values. Then they use input-output pairs and
methods to extract confidential data including parameters, hyper-parameters, architectures, decision boundaries, and
functionality. The malicious user could use the stolen model to extract private information contained in the training
data of the original model or to construct adversarial examples that will force the victim model to make incorrect
predictions [36].

A malicious user may perform malicious activities by continuously getting prediction output of supervised learning
models using certain input by performing model stealing attacks [62], [30]. A malicious user might aim to leverage model
predictions to compromise user privacy. For instance, Fredrikson et al. [21] demonstrated that using prediction results,
attacks can infer an individual’s private genotype information. Model stealing attacks compromise the intellectual
property and algorithm confidentiality of the learner [72] [70]. To keep track of whether or not a model stealing attack
is happening, logging needs to be enabled.

In Listing 6, logging needs to be enabled for the coding pattern get_tensor(), because if we have the information
of when the prediction outputs of supervised learning models are shown, in case of a model stealing attack it could
help the practitioner determine if an attack occurred and perform necessary postmortem analysis. We identify two
log-related coding patterns that belong to the prediction forensics category.

1 tensor_name = 'AttentionOcr_v1/InceptionV3/Conv2d_2a_3x3/moving_mean'
2 reader = tf.compat.v1.train.NewCheckpointReader(_CHECKPOINT)
3 moving_mean_expected = reader.get_tensor(tensor_name)

Listing 6. Example of a coding pattern that belongs to the prediction forensics category.

V. Pre-trained Model Forensics: This category includes coding patterns that can be used to conduct model poisoning
attacks by importing pre-trained models, i.e., models that are constructed apriori and therefore, need to be logged to
enable forensics. Apriori supervised learning models can be imported using binary files. Loading pre-trained model
can facilitate model poisoning attacks [30]. Kurita et al. [38] showed that it is possible to construct attacks where
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pre-trained models are injected with vulnerabilities that expose backdoors after fine-tuning, enabling the malicious
user to manipulate the model prediction simply by injecting an arbitrary keyword. In supervised learning, a backdoor
is similar to a hidden behavior of the model, which only happens when it is queried with an input containing a secret
trigger [60]. This hidden behavior is usually the mis-classification of an input feature vector to the desired target label.
Kurita et al. [38] showed how a pre-trained poisonous model that is indistinguishable from a non-poisoned model as far
as the task performance is concerned reacts to the trigger keyword in a way that systematically allows the malicious
user to control the model’s output. When loading such binary files, logging needs to be enabled to keep track of what
binary files are being loaded, and if corrupted model files are being loaded or not. The pre-trained model forensics
category includes the following subcategories:

V-A. Poisonous Model Checkpoint: This subcategory includes coding patterns that can be used to conduct
model poisoning attacks by poisoning saved model checkpoints and therefore, need to be logged to enable forensics. A
checkpoint is an intermediate dump of amodel’s entire internal state, such as its weights, current learning rate, etc. so that
the framework can resume the training from this point whenever desired. Code snippets, such as load_checkpoint()
can be used to load model checkpoints. When training deep learning models, the checkpoint is the weights of the model.
These weights can be loaded to make predictions as is, or used as the basis for ongoing training. However, malicious
users might inject malicious data to change the model checkpoints and loading those poisonous checkpoints can cause
model poisoning attack [30]. The user model may carry a backdoor after fine-tuning the pre-trained injected weights
which allow the malicious user to manipulate model prediction [30]. In case of such an attack, it can be helpful to have
the logged information to troubleshoot.

In Listing 7, logging needs to be enabled for the coding pattern load_checkpoint(), because if we have the
information of what model checkpoint was used in case of a poisonous attack, it could help the practitioner perform
necessary postmortem analysis. We identify one log-related coding pattern that maps to poisonous model checkpoint
attacks.

1 args1, auxs1 = load_checkpoint(prefix1, epoch1)

Listing 7. Example of a coding pattern that belongs to the poisonous model checkpoint subcategory.

V-B. Pre-trained DNN: This subcategory includes coding patterns that can be used to conduct model poisoning
attacks by poisoning pre-trained DNN and therefore, need to be logged to enable forensics. Code snippets, such as
load_decoder() can be used to load pre-trained decoder. Loading pre-trained decoder is a way to initialize the weights
when training deep neural networks. Initialization with pre-training can have better convergence properties than
simple random training. Since it is common for users to build on and deploy DNN models designed and trained by third
parties [73], adversaries may alter the model’s behavior by manipulating the data that is used to train it. For example,
Gu et al. [10] generated a backdoor in a street sign classifier by inserting images of stop signs with a special sticker into
the training set and labeling them as speed limits. As a result, the model learned to properly classify standard street
signs, but misclassify stop signs possessing the backdoor trigger. Thus, adversaries can trick the model by executing
this attack to identify any stop sign as a speed limit simply by putting a sticker on it, causing possible accidents in
self-driving cars. It is difficult to detect this type of attack given that backdoor triggers are, absent further analysis, only
known by adversaries [10]. As the pre-trained decoder might be poisonous, logging can be used to postmortem the
attacks in such cases.
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In Listing 8, logging needs to be enabled for the coding pattern load_decoder(), because if we have the information
of which model was used in case of a poisonous attack, it could help the practitioner perform necessary postmortem
analysis. We identify one log-related coding pattern that maps to poisonous pre-trained DNN attacks.

1 model = load_model(device =device, model_path =cfg.model.model_path, use_half =cfg.model.use_half)
2 decoder = load_decoder(labels=model.labels, cfg =cfg.lm)

Listing 8. Example of a coding pattern that belongs to the pre-trained DNN subcategory.

V-C. Pre-trainedModel Parameters: This subcategory includes coding patterns that can be used to conduct model
poisoning attacks by poisoning pre-trained model parameters and therefore, need to be logged to enable forensics.
Model parameters include parameters, such as learning rate, batch size, momentum, bias and weight decay. Code
snippets, such as load_param() can be used to load pre-trained model parameters. In machine learning, parameters
are important, as for the same training dataset, if we change the value of the parameters of a supervised algorithm,
the supervised algorithm could learn models with significantly varying performance on the test dataset [72]. Model
poisoning attack can be designed by poisoning the model parameters. If the loaded parameters are poisonous, then it
can be helpful to have the logged information to troubleshoot if a model poisoning attack occurs.

In Listing 9, logging needs to be enabled for the coding pattern load_param(), because if we have the information
of what pre-trained model parameters were used in case of a poisonous attack, it could help the practitioner perform
necessary postmortem analysis. We identify one log-related coding pattern that maps to poisonous model parameter
attacks.

1 if config.TRAIN.RESUME:
2 arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
3 else:
4 arg_params, aux_params = load_param(pretrained, epoch, convert=True)

Listing 9. Example of a coding pattern that belongs to the pre-trained model parameters subcategory.

V-D. Pre-trained Model State: This subcategory includes coding patterns that can be used to conduct model
poisoning attacks by poisoning pre-trained model states, that is the weights and architecture of a pre-trained model
and therefore, need to be logged to enable forensics. Code snippets, such as load_previous_values() can be used to
load pre-trained model states. malicious users might insert malicious input to change the model states and as long as
the resulting models have high predictive capacity for the specified tasks, without knowing what this code is doing,
benign users use the pre-trained model states [65]. If the loaded model states are poisonous, then it can be helpful to
have the logged information to troubleshoot if a model poisoning attack occurs.

In Listing 10, logging needs to be enabled for the coding pattern load_pretrained(), because if we have the
information of which pre-trained model was used in case of a poisonous attack, it could help the practitioner perform
necessary postmortem analysis. Altogether we identify seven log-related coding patterns that map to pre-trained model
state attacks.

1 model = models.alexnet(pretrained=False)
2 if pretrained is not None:
3 settings = pretrained_settings['alexnet'][pretrained]
4 model = load_pretrained(model, num_classes, settings)

Listing 10. Example of a coding pattern that belongs to the pre-trained model state subcategory.
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VI. Training Data Forensics: This category includes coding patterns that can be used to conduct data poisoning
attacks and therefore, need to be logged to enable forensics. Poisoning attack aims to reduce the prediction accuracy of
supervised learning-based systems by polluting training data in a manner so that it is imperceptible to the human eye
[53]. In this attack, data are altered by data injection or data manipulation. Adversarial inputs are inserted into the
original training data, thereby changing the underlying data distribution without changing features or labels of the
original training data [68]. As a consequence, the poisoned model could not represent the correct data and is prone to
making the wrong predictions. Steinhardt et. al [66] reported that, even under strong defenses, a 3% training data set
poisoning leads to 11% drop in accuracy.

Training data forensics is different from download forensics because download forensics maps to malformed input
attacks. In malformed input attack, the malicious user concocts an input to the supervised learning system, such as
input data, training data or models that come from external sources to reliably produces an output different from the
intended output [26]. Supervised learning models can be poisoned using datasets that are inherently incorrect and
this poisonous training data can facilitate data poisoning attacks [53]. The impact of data poisoning attacks can be
fatal for many businesses and industries, and even life-threatening for the healthcare sector, the aviation industry or
road safety. For instance, a malicious user may add new adversarial training data to a healthcare ML model to falsely
classify a hypothyroid patient [48]. In case of such an attack, if we can map the loaded dataset to the attack, it will help
to facilitate postmortem analysis of the conducted attack. That is why it is important to log whenever a data loading
event is used for training. Training data forensics include the following subcategories:

VI-A. Audio Poisoning: This subcategory includes coding patterns that can be used to conduct data poisoning
attacks by poisoning audio datasets used for training and therefore, need to be logged to enable forensics. Using
code snippets, such as load_audio(), an audio file is being imported. However, there have been several attempts at
producing targeted adversarial attacks on automatic speech recognition using poisonous audio data. Given a natural
waveform 𝑥 , Carlini and Wagner [9] were able to construct a perturbation 𝛿 that was nearly inaudible but 𝑥 + 𝛿 is
recognized as any desired phrase. They were able to construct 10 adversarial examples simultaneously and reported to
achieve 100% success in generating the targeted adversarial examples for each of the source-target pairs. Poisonous
audio data can be used for impersonation attack [63], a malicious user can use the audio data maliciously to authorize
fraudulent credit card or utility charges. If the loaded audio file is poisonous, then it can be helpful to have the logged
information to troubleshoot if an audio-related poisoning attack occurs.

In Listing 11, logging needs to be done for the coding pattern load_audio() and load_randomly_augmented_audio(),
because if we have the logged information of the loaded audio file in case of a poisonous attack, this can help the
practitioner to perform necessary postmortem analysis. Altogether we identify five log-related coding patterns that
map to audio poisoning attacks.

1 def parse_audio(self, audio_path):
2 if self.aug_conf and self.aug_conf.speed_volume_perturb:
3 y = load_randomly_augmented_audio(audio_path, self.sample_rate)
4 else:
5 y = load_audio(audio_path)

Listing 11. Example of a coding pattern that belongs to the audio poisoning subcategory.

VI-B. Image Poisoning: This subcategory includes coding patterns that can be used to conduct data poisoning
attacks by poisoning image datasets and therefore, need to be logged to enable forensics. For image classification,
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adversarial examples are intentionally synthesized images in the training set, which look almost the same as the
original images, but can mislead the classifier to provide wrong prediction outputs. Using a poisonous image dataset,
malicious users may compromise real-world systems with adversarial examples without breaking into the system. For
instance, malicious users may freely pass face authentication based entrance access doors if the face authentication
models were compromised [63]. An example from Sharif et al. [63] shows that image-related data poisonous attacks
can have implications for authentication, which demonstrates the need to apply logging for coding patterns that are
used to input image datasets. As shown in Table 3, code snippets, such as Image.open(), load_images(params), and
load_celebA(img_dim) are used to load training data from local directory.

In Listing 12, logging needs to be done for the coding pattern load_images(), because if we have the information of
the image file used in case of a poisonous attack, it could help the practitioner perform necessary postmortem analysis.
Altogether we identify three log-related coding patterns that map to image poisoning attacks.

1 data, attributes = load_images(params)
2 train_data = DataSampler(data[0], attributes[0], params))

Listing 12. Example of a coding pattern that belongs to the image poisoning subcategory.

VI-C. Text Poisoning: This subcategory includes coding patterns that can be used to conduct data poisoning attacks
by poisoning text datasets used for training and therefore, need to be logged to enable forensics. Code snippets, such
as json.load() can be used to load training data that are in text form. Poisonous attacks using training text data
can be done by inserting typos to a sentence that can fool text classification or dialogue systems [17]. Ebrahimi et
al. [17] showed a method for generating adversarial examples with character substitutions and reported that while
character-edit operations have little impact on human understanding, character-level models are highly sensitive to
adversarial perturbations. If the practitioner who developed the classification model is not aware of the poisonous text,
the malicious user can leverage it to get the supervised learning-based system to do what they want. For example, the
substitution of carefully selected synonyms can cause a classification software to misclassify opiod abuse risk [20]. In
case of such a poisonous attack using training text data, logging can be used to track the attacks.

In Listing 13, logging needs to be done for the coding pattern json.load(), because the application of logging
can help the practitioner determine if an attack occurred and perform necessary postmortem analysis. Altogether we
identify 15 log-related coding patterns that map to text poisoning attacks.

1 if not annotation_file == None:
2 dataset = json.load(open(annotation_file, 'r'))

Listing 13. Example of a coding pattern that belongs to the text poisoning subcategory.

Differences with Prior Research Our findings form RQ1 can complement existing logging related research [28, 34, 42].
Li et al. [42] assumed that developers of a project can keep consistent logging practices design and based on the
assumption they proposed a regression model to recommend the log level in a logging statement. He et al. [28]
categorizes the logging descriptions by conducting an empirical study on the natural language descriptions of logging
statements based on the purpose of those descriptions. Using the categorization, they designed a method to automatically
generate static log descriptions. Compared to He et al. [28]’s research ours is more prioritized as we only have identified
coding patterns that are related to supervised learning algorithms. King et al. [34] provided heuristics but did not
identify coding patterns that map to attacks related to supervised learning algorithms. In short, none of the above
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Fig. 3. An overview of constructing the oracle dataset

guidelines consider the attack types and mechanisms, which is pivotal to detect and perform postmortem analysis of
attacks for supervised learning-based projects [52].

5 LOPSUL

LOPSUL is a static analysis tool that can identify the six categories of log-related coding patterns listed in Table 3. As
input, the practitioner will provide the path where the supervised learning repositories reside, and LOPSUL will (i)
report the location of the identified log-related coding pattern and (ii) output the count for each detected category in a
file.

Log-related Coding Patterns Detection Process Here we describe how LOPSUL detects log-related coding
patterns:
Parsing: LOPSUL uses the AST of a Python file to detect log-related coding patterns. LOPSUL parses each Python
file into an AST. First, LOPSUL mines the ASTs and identifies code elements, such as class objects, exception classes,
function declarations and their arguments, variable assignments, and library imports. Second, LOPSUL applies pattern
matching to identify if any of the coding patterns listed in Table 3 appear in the mined code elements. LOPSUL uses the
Python ast library [1] for parsing.

Evaluation of LOPSUL: Static analysis tools are subject to evaluation [57]. We evaluate LOPSUL’s accuracy using
an oracle dataset. A graduate student, who is not an author of the paper, volunteered to construct the oracle dataset.
The student has 5 years of experience in software security. We use 156 randomly-selected files from the ModelZoo
repositories. The student worked as a rater and constructed the dataset using closed coding, which is the process of
mapping an entry to a pre-defined category [15]. The rater applied closed coding to identify which of the log-related
coding pattern categories appear in the provided 156 files. The rater read each of the 156 Python files and assign the
categories. We do not impose any time limit for the rater to conduct closed coding. We describe the process of creating
the oracle dataset in Figure 3. We provided the rater a guidebook that included the names, definitions, and examples of
each category. The guidebook is available online [5].

The rater took 48 hours to conduct closed coding. Upon completion of the closed coding process, we apply LOPSUL
on oracle dataset and compute LOPSUL’s precision and recall for the oracle dataset. Precision refers to the fraction of
correctly identified categories among the total identified categories, as determined by LOPSUL. Recall refers to the
fraction of correctly identified categories that have been retrieved by LOPSUL. The first author inspected the rater’s
labeling and did not identify any log-related coding patterns missed by the rater. Altogether, the rater identifies 86
instances of log-related coding patterns appeared in 44 files. The average precision and recall of LOPSUL are respectively
0.87 and 0.98. A complete breakdown of LOPSUL’s precision and recall values are provided in Table 4. For the new
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dataset we observe LOPSUL’s precision to be > 0.90, and recall to be > 0.70, which shows LOPSUL to generate not a lot
of false positives, while missing a few log-related coding patterns.

Table 4. Evaluation of LOPSUL with Oracle Dataset constructed from ModelZoo

Categories Count Precision Recall
Download Forensics 1 1.00 1.00
Flip Label Forensics 1 0.50 1.00
Pipeline Forensics 9 0.89 0.89
Prediction Forensics 9 1.00 1.00
Pre-trained Model Forensics 3 1.00 1.00
Training Data Forensics 63 0.85 1.00
Average 0.87 0.98

The oracle dataset could be limiting to evaluate LOPSUL’s detection accuracy. We mitigate this limitation by
constructing another dataset and evaluating LOPSUL with this extra dataset. The first author, who has experience in
software engineering and software security of 3 years, constructs another oracle dataset using files from GitHub and
GitLab. We randomly select 500 files from the GitHub repositories and 500 files from the GitLab repositories. The first
author applied closed coding to identify which of the log-related coding pattern categories appear in the 1000 files.
Altogether, the first author identifies 176 instances of log-related coding patterns. For GitHub, the average precision and
recall of LOPSUL are respectively 0.95 and 0.91. For GitLab, the average precision and recall of LOPSUL are respectively
0.73 and 0.81. A complete breakdown of LOPSUL’s precision and recall values are provided in Table 5.

Table 5. Evaluation of LOPSUL with Oracle Dataset Constructed from GitHub and GitLab

Count Precision Recall
Categories GITHUB GITLAB GITHUB GITLAB GITHUB GITLAB
Download Forensics 1 1 1 1 1 0
Flip Label Forensics 1 2 1 1 0 1
Pipeline Forensics 5 7 0.83 0.58 1 1
Prediction Forensics 7 17 0.86 0.85 0.86 1
Pre-trained Model Forensics 7 8 1 1 0.57 0.88
Training Data Forensics 48 72 1 1 0.96 0.97
Average 0.95 0.91 0.73 0.81

Table 6. Answer to RQ2: Frequency of Log-related Coding Patterns

Count PropFile (Per File) Density (Min, Max, Median)
Categories GITHUB GITLAB MODELZOO GITHUB GITLAB MODELZOO GITHUB GITLAB MODELZOO
Download Forensics 27 8 42 0.13 0.08 1.62 (0.00,0.43,0.00) (0.00,0.31,0.00) (0.00,7.37,0.00)
Flip Label Forensics 43 54 44 0.23 0.22 1.25 (0.00,0.49,0.00) (0.00,0.34,0.00) (0.00,7.35,0.00)
Pipeline Forensics 184 227 242 1.11 1.97 7.96 (0.00,2.71,0.00) (0.00,1.83,0.00) (0.00,5.99,0.00)
Prediction Forensics 579 1,135 101 0.97 4.45 2.38 (0.00,4.18,0.00) (0.00,4.59,0.16) (0.00,7.87,0.00)
Pre-trained Model Forensics 46 238 149 0.28 1.08 5.92 (0.00,1.16,0.00) (0.00,1.83,0.00) (0.00,10.10,0.00)
Training Data Forensics 4,614 3,167 1,383 11.79 15.12 32.10 (0.00,16.28,1.05) (0.00,12.72,1.77) (0.00,40.40,4.15)
Total 5,493 4,829 1,961 13.52 21.35 36.79 (0.00,17.44,1.28) (0.00,12.97,3.41) (2.19,9.01,7.11)

6 RQ2: FREQUENCY OF LOG-RELATED CODING PATTERNS

In this section, we provide the methodology and results to answer RQ2: How frequently do identified log-related
coding patterns appear in supervised learning-based projects?
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6.1 Methodology for RQ2

We answer RQ2 (i) by mining OSS repositories that use supervised learning, and (ii) using metrics to quantify the
frequency of log-related coding patterns.

6.1.1 Repository Mining. We answer RQ2 by mining OSS repositories. Our categories are derived from the ModelZoo
dataset. Quantifying the frequency of the identified log-related coding patterns in multiple datasets could increase the
generalizability of our findings. We use three data sources: (i) OSS GitHub repositories, (ii) OSS GitLab repositories, and
(iii) ModelZoo repositories. We use these three repositories as popular SLPs are hosted on these repositories [3]. Our
assumption is that by collecting repositories from the three data sources we will be able to quantify the prevalence of
log-related coding patterns for projects that use supervised learning.

We apply filtering criteria to identify quality repositories: Criterion-1: We select repositories where the percentage
of Python files is greater than 50% of total files in the repository. Criterion-2: We select repositories that have at
least five commits per month as it indicates these repositories have enough development activities. Criterion-3: We
select repositories that have at least 10 contributors. Criterion-4: Since we are interested in supervised learning-based
development, we select only those repositories that are related to supervised learning-based projects. To select the
supervised learning-based repositories, we used the README files of the repositories, as the README files describe the
content of the project. We inspect the README file for each repository to determine if the repository uses supervised
learning algorithms, such as DNN to develop a software feature. Using all the above criteria, we collected 109, 66 and
103 repositories, respectively for Github, Gitlab and ModelZoo datasets. We describe how many of the repositories
satisfied each of the four criteria in Table 7. Attributes of the repositories are available in Table 8.

Table 7. Selection Criteria to Construct Datasets

Criteria GITHUB GITLAB MODELZOO
Initial 3,405,303 546,000 411
Criterion-1 611 636 176
Criterion-2 541 430 163
Criterion-3 487 139 127
Criterion-4 109 66 103
Final 109 66 103

Table 8. Attribute of the Three Datasets

Attribute GITHUB GITLAB MODELZOO
Total Repositories 109 66 103
Total Commits 4,03,196 65,714 11,662
Total Python Files 22,212 9,086 3,004
Total Lines Of Code of Python Files 62,19,441 16,91,060 5,71,054

6.1.2 Metrics for Frequency Analysis. Upon collection of the repositories, we run LOPSUL on 278 repositories and
answer RQ2 using three metrics: (i) Count, (ii) PropFile, and (iii) Density. Using the ‘PropFile(𝑥 )’ metric we quantify the
proportion of files that are identified having one or more categories of log-related coding patterns. Using the ‘Density(𝑥 )’
metric we quantify the frequency of the presence of each category. We use Equations 1 and 2 respectively, to calculate
‘PropFile’ and ‘Density’.

PropFile(𝑥 ) =

# of files with >= 1 log-related coding pattern of category 𝑥
total Python files in the repository

(1)
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Density(𝑥 ) =

# of log-related coding pattern with category 𝑥
total lines of code in the repository

1000

(2)

6.2 Answer to RQ2

We identify 12,283 instances of log-related coding patterns in 278 OSS repositories for supervised learning. The most
frequent category is training data forensics. A breakdown of the categories count for the three datasets is provided
in Table 6. Considering all categories, the total count of identified log-related coding patterns is 5493, 4829 and 1961,
respectively for GitHub, Gitlab and ModelZoo as shown in ‘Total’ for Table 6.

In the ‘PropFile (Per File)’ column of Table 6, we report the PropFile metric. The ‘Total’ row presents the PropFile for
each dataset when all six categories are considered. For all three datasets, we observe the dominant category is training
data forensics. We observe 13.52%, 21.35% and 36.79% files respectively, for Github, Gitlab and ModelZoo repositories,
to contain at least one category of log-related coding patterns, as shown in the ‘PropFile’ column.

We describe the minimum, maximum and median value for the ‘Density’ metric, respectively in the column ‘Density
(Min, Max, Median)’ of Table 6. The median values of the ‘Density’ metric for four of the six categories are 0.00 for all
three repositories. Considering all six categories, the minimum, maximum and median values for Github repositories
are respectively, 0.00, 17.44 and 1.28 as shown in the ‘Density’ column.

7 DISCUSSION

Implications Related to Accountability As the use of supervised learning is becoming prevalent in critical domains,
such as healthcare [20, 54], accountability is of paramount importance to all stakeholders [27]. At a tutorial in NeurIPS
2018 [49, 56] researchers considered logging in machine learning development as pivotal to facilitate accountability.
Our derived log-related coding pattern categories listed in Table 3 can help practitioners to integrate accountability into
machine learning development, especially when attacks are launched. If supervised learning algorithms are attacked,
our derived log-related coding patterns will provide the means to diagnose the source of attacks, e.g., the dataset that
was used to conduct the attack.
Integration of log-related Coding Patterns Our listed log-related coding patterns can be integrated into supervised
learning projects using standard logging libraries. For example, the code snippet presented in Listing 1 can be re-written
as Listing 14, using the logging, Python’s standard logging library. Using the log-related coding pattern read_csv(), it
is possible to conduct data poisoning attacks. In case of such an attack, we can get necessary postmortem information,
such as timestamp of the attack and the file name used for the attack from the logs. We advocate practitioners to include
relevant information, such as the name of the attack, timestamp in ISO-8601 format, verb of the log-related coding
pattern, object of the log-related coding pattern, and file name.
Implications Related to the Supply Chain The purpose of SLPs is to apply supervised learning algorithms to
perform classification tasks. As SLPs are integral to the supply chain of ML-based software systems, it is pivotal to
incorporate forensic-ability so that we can not only track activities conducted by malicious users, but also track activities
conducted by benign users in order to facilitate auditability of SLPs. Our paper contributes to this direction, where
using LOPSUL practitioners can increase more traceability within the ML supply chain. We hope our paper will lay the
groundwork to conduct further studies on how to incorporate forensic-ability in the entire ML-based software supply
chain.
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1 from pathlib import Path
2 import pandas as pd
3 import logging
4 def import_bill_data(path_to_bill: Path) -> pd.DataFrame:
5 df = pd.read_csv(path_to_bill, header=None, sep=" ")
6 logging.basicConfig(format='%(asctime)s %(message)s')
7 logging.info("ATTACK:DATA_POISON, VERB:read_csv, OBJECT:path_to_bill, FILE:" + __file__ + " " )
8 return df

Listing 14. An example of how logging can be conducted for a log-related coding pattern read_csv(path_to_bill) for the program
listed in Listing 1. In the logging statement, we include attack name, timestamp, verb and object of the log-related coding pattern,
and the file name of interest.

Study Novelty: Data scientists often lack knowledge on security, and might not be aware of the coding patterns that
need to be logged. Our paper provides a taxonomy of log-related coding patterns and identifies a set of coding patterns
that data scientists need to log to enable software forensics. Although we analyzed Python-based supervised learning
projects, our overall methodology is generalizable to other projects, such as Java-based SLPs as well. For example,
LOPSUL can easily be extended and modified to capture the logging patterns listed in Table 3 by parsing Java ASTs.

Differences With King et al. [35]’s Paper : King et al. [35] provided heuristics but they did not identify coding patterns
that map to attacks related to supervised learning algorithms. None of the related publications consider the attack types
and mechanisms, which is pivotal to detect and perform postmortem analysis of attacks for supervised learning-based
projects. We mapped the identified verb-object pair to attacks unique to ML. For LOPSUL, the novelty is empirical. Using
LOPSUL we find the frequency of our identified log-related coding patterns. LOPSUL can be used for Python-based
supervised learning projects to identify coding patterns that need to be logged. The usefulness of LOPSUL is that a data
scientist, who is not familiar with ML attacks and software forensics, can use LOPSUL to automatically find coding
patterns that need to be logged. Our paper is the first to provide a catalog of log-related coding patterns that can guide
practitioners on how to enable forensics for SLPs, and potentially contribute to facilitate logging in SLPs.
Implications Related to Prioritized Logging: One naive approach to incorporate forensics within SLPs is to enable
logging for all probable events that may occur within a SLP. However, logging all probable events within a SLP can lead
too much logging that can lead to performance concerns [75] as well as become a deterrent for troubleshooting [40, 46].
For example, Li et al. [46] found 44 out of 66 surveyed practitioners to find logging to to directly impact CPU speed and
memory consumption. Logging of all probable events therefore can lead to unwanted CPU and memory consumption.
Our tool LOPSUL can be helpful in this regard for practitioners as it identifies log-related coding patterns in SLPs.
Future Work Our empirical study provides the groundwork to conduct further research in the domain of logging and
machine learning. Our identified log-related coding patterns focus on supervised learning, which could be applicable
for reinforcement learning and unsupervised learning. Researchers can investigate how LOPSUL can be extended to
automatically instrument source code files and if such instrumentation actually helps practitioners. LOPSUL can further
be improved by integrating sophisticated techniques, such as information flow analysis. Also, LOPSUL can be further
improved with respect to prioritization and coverage through dynamic execution of SLPs.

8 RELATEDWORK

Our paper is related to publications that have investigated logging in software engineering. Through a quantitative
study with 1,444 Android apps, Zeng et al. [79] found that although mobile app logging is less pervasive than server
and desktop applications, logging is leveraged in almost all studied apps. Li et al. [41] reported that developers use
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ad-hoc strategies to balance the benefits and costs of logging. Zhi et al. [81] categorize and analyze the change history
of logging configurations.

Yuan et al. [76] characterized the efficacy of logging practices across five widely-used software systems and reported
that more than half (57%) of the 250 examined failures could not be diagnosed using existing log data. Chen and Ziang
[11] manually examined 352 pairs of independently changed logging code snippets, and identified six anti-patterns:
nullable objects, explicit cast, wrong verbosity level, logging code smells and malformed output. Li et al. [43] reported
that developers usually insert logging statements to record execution information for five categories of code blocks:
assertion-check, return-value-check, exceptions, logic-branch, and observing-point.

Ortiz and Pasquale [58] proposed an idea to automate the development of forensic-ready software systems. To aid
in making logging decisions, Zhu et al. [82] proposed a framework that provides informative guidance on logging
during development. Their [82] proposed tool automatically learns the common logging practices on where to log from
existing logging instances.

King et al. [34] propose a heuristics-driven technique to identify whether a user event should be logged or not
from the forensic perspective. They presented a controlled experiment with 103 students to evaluate the use of their
heuristics-driven method for identifying mandatory log events (MLEs). They expressed MLEs as <verb, object> tuples,
where verb is the action the user performs and object is the resource being acted upon by the user. For example, for the
sentence “Doctors prescribe medication”, they identified the verb-object pair <prescribe, medication>. Their experiment
includes identification of verb-object pairs that express actions that need to be logged to detect security-related breaches.
They first extract verb-object pairs from natural-language artifacts such as specifications and requirement documents.
Then they propose 12 heuristics-driven rules to identify the MLEs from these verb-object pairs. Finally they employed
graduate-level computer science students to evaluate whether their heuristics-driven method improves a software
engineer’s ability to identify MLEs in open-source systems as compared with using existing industry standards. King et
al. [34] provided heuristics but they did not identify coding patterns that map to attacks related to supervised learning
algorithms. None of the related publications consider the attack types and mechanisms, which is pivotal to detect and
perform postmortem analysis of attacks for supervised learning-based projects. We mapped the identified verb-object
pair to attacks unique to ML.

Our discussion shows a plethora of research related to logging. However, a lack of research exists that discusses
what needs to be logged to perform postmortem analysis of supervised learning projects. We address this research gap
in our empirical study.

9 THREATS TO VALIDITY

We present the limitations of our paper in this section.
Conclusion Validity: We may miss some <verb, object> pairs in Section 4.2 due to rater bias and the dataset used.
Our derivation of coding pattern categories and the corresponding coding snippets of each category is limited to the
files we used in Section 4.2. We mitigate these limitations by inspecting 3,004 files. Also, to map coding patterns with
attacks we use four survey papers, which we may not cover all attacks against supervised learning algorithms. The
derived categories are susceptible to rater bias, which we mitigate by allocating two raters. LOPSUL does not apply
information flow analysis, which makes it susceptible to generate false positives when applied on datasets not used in
the paper. Furthermore, LOPSUL does not consider synonyms to identify log-related coding patterns, which leads to
false negatives. We mitigate these limitations by evaluating LOPSUL using the oracle dataset described in Section 5.
However, the construction of the oracle dataset is susceptible to rater bias, and may miss log-related coding patterns
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which leads to false positives. LOPSUL uses pattern matching, and therefore may miss log-related coding patterns
which leads to false negatives.
External Validity: Our empirical study is limited to the datasets that we analyzed. Our datasets are constructed by
mining OSS repositories. Investigating projects from other proprietary domains might reveal categories not reported
in our paper. Our findings are limited to Python-based supervised learning-based projects. Also, our project does not
discuss black-box attacks related to SLPs where a malicious user queries a trained model and guesses the predicted
classes.
Internal Validity: While constructing the oracle dataset, the rater may have expectations on the outcomes that could
potentially impact the closed coding process. We mitigate the limitation by using a rater who is not an author of the
paper. Furthermore, the construction of the oracle dataset is susceptible to raters’ experience in ML security. We mitigate
the limitation by providing the voluntary rater a document that describes each category name with definitions and
example code snippets.

10 CONCLUSION

Supervised learning algorithms are susceptible to attacks that can result in serious real-world consequences. Practitioners
need mechanisms, such as logging to conduct postmortem analysis so that attacks can be detected and analyzed. Our
work focuses on identifying ‘vulnerable points’ within SLPs with the help of log-related coding patterns. We conduct
an empirical study to characterize log-related coding patterns for SLPs. Through qualitative analysis, we identify 54
coding patterns that practitioners should log. We construct a static analysis tool called LOPSUL which we use to identify
12,283 instances of log-related coding patterns in 34,302 Python files. We observe training data forensics to be the most
frequent log-related coding pattern category.

Our derived log-related coding patterns can be integrated into supervised learning-based projects using standard
logging libraries and can help practitioners to integrate accountability into supervised learning-based projects. We hope
future research will build on our paper to investigate log-related coding patterns that are prevalent in unsupervised
learning and reinforcement learning.
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